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ABSTRACT

An efficient method is described for sensitivity analysis of nonlinear

initial value problems, which may include algebraic equations as well as

ordinary differential equations.{ODE's-).'1-'

The linearity of the sensitivity equations is utilized to solve them

directly via the local Jacobian of the state equations. The method is

.. implemented with the implicit integrator DASSL and is demonstrated on a

stiff industrial reaction model.
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SIGNIFICANCE AND EXPLANATION

Many physical systems are modelled by systems of ordinary differential

and algebraic equations with initial conditions. The solution vector u
- 1.1..

K depends on the time t, and on a vector 0 of unknown parameters. This
report deals with the calculation of the first-order parametric sensitivities,

Wik(t',e) = aui/aek, which are useful in parameter estimation, system design

and control.

The method gi\,-,.n here takes advantage of the similarity of the backward

difference forms of the u-equations and W-equations, as well as the linearity

of the W-equations, to achieve unusually fast solutions with minimal memory

requirements. The method has been implemented as a modification of the

S,. program package DASSL. Numerical results are given for a chemical kinetic

example.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors ef this report.
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SCOPE

With the rapid development of digital computers, increasingly realistic

mathematical models are being used to investigate chemical phenomena. New

mechanistic features, however, call for new physicochemical parameters whose

values may not be accurately known. Consequently, there is an increasing

need for parametric sensitivity analysis of proposed differential and

algebraic models.

Parametric sensitivity analysis is a very active research area.

Extensive reviews can be found in Rabltz et al. [14), and in

Tilden et al. [17). Applications occur in every engineering and scientific

discipline. Potential areas of application in chemical engineering include

optimization, parameter estimation, model simplification, process

sensitivity and multiplicity, experimental design and many more.

In this paper we address the problem of numerical computation of

sensitivity functions for systems of ordinary differential and algebraic

equations. We develop a simple, efficient algorithm for this purpose by

extension of a standard iml.licit integrator.

F.A.
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WITH MIXED ODE'S AND ALGEBRAIC EQUATIONS

Makis Caracotsios and Warren E. Stewart

PROBLEM STATEMENT.

Consider a dynamic system, described by the following set of

differential and algebraic equations:

•t•W0-tO) - WO(j) (1b)

Here u is an n-dimensional vector of state variables, 8 is an m-dimensional

vector of time-independent parameters and E is an (n,n) matrix of constant

coefficients. Must frequently in chemical kinetics calculations the matrix

E assumes the form

-(s)

where 1(9) is the identity matrix of order s. If s - n, system (la) con-

sists of purely differential equations. If 1 < s < n, system (la) consists

of ordinary differential and algebraic equations. The latter case arises,

for instance, in analysis of reaction schemes where equilibria give

algebraic constraints on the concentrations.

We define the (n,m) matrix W(t) of sensitivity functions as

-~Wlt): -j •t)1

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by
the National Science Foundation under Grant No. CPE-8308748.
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This matrix satisfies a set of differential/algebraic equations which can

be derived by partial differentiation of equations (1a), (1b) with respect

to the parameter vector 0:

w(tt 0) - (4b)

"where the matrix J(t) (shorthand for J(t,u(t);R)) is defined as

Various properties of equations (4a) and (4b) are described in Tomovic

and Vukobratovic [18). The most striking feature of these sensitivity

equations is that they are linear, regardless of the linearity or

nonlinearity of the state equations (la) and (lb). The problem studied here

is the numerical computation of the matrix W(t) from equations (4a)

and (4b).

LITERATURE REVIEW AND THEORETICAL BACKGROUND

Before describing the new algorithm, we review a few known facts about

the solution of mixed systems of ordinary differential and algebraic

equations. Several investigators [6), [7], [15), have considered this

subject And recently Petzold [11] has published an algorithm called DASSL

for the solution of such systems.

Not all systems of differential/algebraic equations are solvable. The

0"- reader is encouraged to consult the literature, Petzold and Gear [12), and

".. Campbell and Petzold [2), on this peculiar feature of mixed systems.

However, for the systems that we are considering, where the matrix

-2-
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E assumes the form (2), sufficient conditions are known [12] for the

solvability of (1a) and (ib).

Let the function f(t,u(t);O) be continuously differentiable

with respect to u(t). Now consider the Jacobian matrix J(t) defined by

equation (5) for the system (la). If we partition the Jacobian matr%

according to the partition of E, i.e.,

;11 iit) :

. ..t. (6)
] .',NF,"L 21(t) ý22(t j

, .J kL

where J11 (t) is an (s,s) matrix, then the system (la) and (ib) is

•V. solvable if

det k22 (t) • 0 for all t (7)

Under this condition, the solution obtained by a k-step backward

differentiation formula algorithm with k o 7 and fixed step size h converges

"to O(hk) if all initial values are correct. Further aspects of

equations (la) and (1b) and their numerical treatment are discussed

in Petzold [13].

Let us now review some of the methods used for the computation of the

sensitivity matrix W(t). With one exception (Stewart and SOrensen [16])

the known methods are for systems of ODE's only; that is, for systems with

E = I(n). The available algorithms include the Fourier amplitude test [4),

direct differential methods [5], Green's function methods [8], the

analytically integrated Magnus method [14] (a modification of the Green's

function method), and finite difference methods. The Green's function

-3-
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method and its variations exploit the fact that the sensitivity equations

are linear inhomogeneous with time varying coefficients; consequently they

can be solved by first calculating the solution of the homogeneous part and

then determining the particular solution corresponding to each parameter.

Several authors have proposed to solve the sensitivity equations by

extending known solution algorithms for the state equations. This idea is

based on the identity of the coefficient matrices in the sensitivity

equations to those in the locally linearized form of the state equations

on the locus u(t). Stewart and S~rensen [16], Vemuri and Raefsky [19],

Lojek [10], and Hwang [9) have developed various aspects of this method;

nevertheless the idea is still under development.

In the present work, we exploit fully the similarity of the sensitivity

and state equations, by building the sensitivity analysis into a robust

differential/algebraic equation solver. Then we illustrate the algorithm

by solving a stiff industrial kinetics problem.

MATHEMATICAL DEVELOPMENT OF THE SENSITIVITY ANALYSIS ALGORITHM

One of the most important steps in developing the sensitivity analysis

algorithm was the selection of the integrator. For mixed systems of

differential and algebraic equations, there are several codes

"[7], [11J, [15) designed to perform the integration. These codes are

primarily based on an idea developed by Gear [6); specifically, the

derivative u'(tn+I) is approximated by a backward difference formula with

adaptable order and step size, and the resulting system of nonlinear

equations is solved for U(tn+I) via a modified Newton scheme.

We chose for this work the package DASSL developed by Petzold [11].

-4-
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This package is portable, robust and easy to use. We tested the code

successfully on a wide variety of stiff problems, both differential and

mixed, before adding the sensitivity analysis algorithm.

First, consider the solution of state and sensitivity equations

(la), (1b), (4a), (4b) as a single system. In this approach, one needs the

Jacobian matrix of the total system (1a) and (4a). If we partition the

sensitivity matrix W(t) into column vectors as

Wlt) [W l 42lt ... I,(lt)] (8)

where

•(~t): * - I " 1,2, ... m, (9)

then the Jacobian matrix J*(t) (shorthand for J*(tqu(t),W(t);j))

of the total system (1a) and (4a) is

: 42(t) Q. . . . Q
. (10)

4m(t) S 1•0 a • ' • • • •

where

(t)t) +,(t)
".-. J1(t); " - Vlt) +-)0 i = 1,2, ... m (11)1

-5-
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The evaluation of J*(t) is a formidable calculation, though a natural

requirement of Newton iteration on the total equation system, (la) and (4a).

A simpler and quicker approach is to solve (la) before (4a) at each time

step, as shown below; then the matrices Ji(t) are not required.

"Let u(r)(t) be the local interpolant of u(t) obtained in r Newton

iterations of a kth-order integrator within a given time step. Then the
2 ir)t +,(rt,

next iteration will give the interpolant u )(t) ( which

satisfies the following linearized form of equation (la)

' - + O(hk) (12)

Hence the correction IU(r) satisfies

"")•(r l (r t,j(r)(t);) (r)(t) + O(hk) (13)

when the standard Newton method (with j(r)(t) updated for each iteration)

is used. If A1(r)(t) converges toward zero with increasing r, then

J(r)(t) converges toward J(t), and equation (13) becomes formally similar

to equation (4a). Therefore, we can defer consideration of equation (4a)

until u(r)(t) has converged to u(t) at the current value of t. Then we

can update the sensitivity solution Wi(t) directly by use of equation (4a),

which has the same coefficients as equation (13) but a different, now

computable right hand function. More specifically the corrections

V.): AW..(t) are calculated via a single iteration by solving

:•.-•i~)-•() •~t) -'(P)(t)+o(t) i•P)(t) + X_ (t,•(t);j) + O(hk)

1 1,2, ete m (14)

;/-6-
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in which w•PJ(t) is the predicted value of Wpt) via a kth-order
-1 

vi

predictor formula.

The vectors Oi(t) are calculated at the current t as follows:

V= i )(t) + 1ilt) i = 1,2, .. m (15)

On completion of the update, the local truncation error is tested, and if

necessary the step size h and approximation order k are adjusted to achieve

the specified accuracy for u(t) and W(t).

Numerical tests show that stringent tolerances on u(t) normally lead

to a good solution for W(t) as well, provided that Jdt) is updated before

Scomputing AW(t). On the other hand, if the iteration matrix is only

occasionally updated 'as is usual in implicit integrators), then the local

tolerances on W(t) are essential to control the calculation.

COMPUTER IMPLEMENTATION

The computer implementation of the sensitivity analysis algorithm was

"done as follows:

1) The working arrays used by DASSL were modified to provide storage

"allocation for the sensitivity functions.

* 2) An algorithm was written for the automatic formation of the

sensitivity equations.

.3) The integrator in DASSL was properly extended to include the

*l solution of the sensitivities.

The following definitions were adopted:

-7-
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1) Iteration matrix D(t): = cE - J(t), where c is a constant which

depends on step size history

2) Residual of the state equations

BO(t): = (t) -

3) Residual of the sensitivity equations

VM

The calculation sequence is outlined in the adjoining flow chart.

II
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Solve D(tAW -Ri M

Estimate local •tuncation error

for "(t),w(t)

"YE Error < TOL ? NO

" Update, ,, I Reduce stop size and/or
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1E Exit with error
IM (
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NUMERICAL EXAMPLE

The algorithm was tested on a wide variety of problems, ranging from

linear and nonlinear systems of differential equations to large systems of

differential and algebraic equations. We present here a batch reactor

example given by the Dow Chemical Company [1). Figure 1 shows the

proposed mechanism for the reaction system. The time dependent

concentrations are modelled by the following system of differential and

algebraic equations:

ui(t) - -k 2u2(t)u8(t)

(t)(k )
(t -k u (flu (t) + k,.u 10 t Mu k~ 2 t (t)

u (t) = k U u2 ( (t) + k u (flu (t) - k_ u (t)

u4(t) = -k 3 u4 (Mu 6(t) + k_3 u9(t)

u,(t) - k 1u2 (t)u6(t) - k~lul 0 (t)

u (t) -k -ku Mtu(t) - k u Mtu (t) + k..u 1 (t) + k_3 u9(t)

u7 (t) -- 0.0131 + u6(t) + u8(t) + u9(t) + u10(t) (16)

-K2ul(t)
u (t)

= t K3u3(t)
u9( K +u (t)

Kju5(t)
u10(t) =____
10 K +u (t)

-12-



Figure 1. Chemical reaction model for the numerical example [1]. The
numbers are used for the enumeration of the chemical species.
as in equation (16).

Slow Kinetic Reactions

ki 10
BM MBM-

S k-1

BM 9ABM-

A ABM
-!i:..W. M + 4AB -k_ ABM

- .id Acid-Base Reactions

5MBMH MBM- +

'HA A- A

:;,.'.: K 3 ._
3HABM K- ABM- +

Figure 1.
"-13-

-•, T-,4_ 
.. 4 . -:~

2'; '. ., .. ,.... ... ..-. . . . . ..-...... .-.- • ., - . *..- . *'..,..-..• , ,,., ,., .. •.'% ',,-\~ •, . , ,., ,• ,, , . . .



with initial conditions

ui(0) =1.5776

u 2(0) =8.32

u.i(0) =0 j =3,4,5,9,10 (17)

U6 (0) =0.0131

7~0 0.5{-K 2 +A 2 K2ulo 0)

U8(0) -U7(O)

The following values of rate and equilibrium constants were used [3]

k 21.893 hr1 Kg pmole

k_= 2.14 E09 hr1

k 2 = 32.318 hr1 Kg pmole

(18)1
k 3 U21. U3 h,,*- Kg gmole-

k_3 =1.07 E09 hr1

K1  7.65 E-18 gmole Kg 1

*11

K3 z S.32 E-18 gpole Kg

-14-



The natural logarithms of these constants make up the parameter vector 0.
au(t)

Our goa'i is to estimate the sensitivity matrix W(t) = ..- a__

The combined system of state and sensitivity functions consists of

90 equations, 54 of which are differential and 36 are algebraic. This

problem presents a severe test for the DASSL integrator and the sensitivity

analysis algorithm.

Table 1. summarizes the computational effort for the solution of the

above problem on a VAX 11/780 computer. All calculations were carried out

in double precision. A mixed local truncation error control provided in

[11] was used. The tolerances for the sensitivities were equated to the

tolerances of the state variables. The total reaction time considered

was 53 hr.

Figures 2 and 3 show the evolution of the concentration profiles as

a function of time, while Figures 4 through 11 show the dynamic behavior

of the sensitivity functions.

Sensitivity plots, like those in Figures 4-11, can be of considerable

use to the theoretician as well as to the experimentalist. From Figures

4 through 11 we see that all of the rate aild equilibrium constants have

comparable effects on the concentrations and therefore we cannot eliminate

any step from the proposed mechanism in Figure 1. However, a close

inspection of the results reveals the following linear relations:

alit) •t
k- (19)

4k -1 1K

BW~t) 4(t)
k 3  K 3 3 K (20)

-15-
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TABLE 1.

Computational effort for the solution of the Dow problem

STATE EQUATIONS SENSITIVITY EQUATIONS

e -1O- eul.OE-7 eul.OE-6 e=1.OE-7

Time steps : 191 265 187 264

Function evaluations: 418 587 383 534

CPU'secs : 4.0 5.5 23.5 33

*local error test at each time step which requires roughly that
abs (local error) less or equal than rtol-abs(u)+atol
where rtol=atol-e.

J1-

4.4•ABE 1
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Figure 2. Concentration functions ul (t) in ginole/kg.

l..k

- '•-17-

- •**[.*.• ..



iON

90.

.e•e1w.

Fiut u(t) a f//
.2,,

--- :i, 
""'I... .A

3 e eJ e- ,

t-hrs

'C'
•-• Figure 3.

•-•'•...Figure 3. Concentration functions ui(t) in gmolelkg.

.0,

':•" 
-18-

A ,

A A A-

• i-•-.'. .• '.',.''.'''''.'".•:,-.,..'. .-.. ..
,...." ,",..- 

', 

.A""'""'•'''' 
."''" . .- -. '"•" , "."•"• 

- .• _



. 4 -" ~k

0.2-
"( " 1- --- 07 -

-0.2

3

.- 2.

.4o2 4 6 t

t- hrs

Figure 4.

Figure 4. Elements of the sensitivity vector - . The number

k denotes the sensitivity coefficient u (t) with respect
to Znk1. Numbers not shown correspond to sensitivity
functions indistinguishable from zero at all times.
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Figure 5. Elements of the sensitivity vector
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Figure 7. Elements of the sensitivity vector 3,u(t)/aznk3.
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Figure 9. Elements of the sensitivity vector au(t)/Dznk1
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Figure 10., Elements of the sensitivity vector ak(t)/3tnk2.
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Figure 11. Elements of the sensitivity vector ut)an 3.
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Thus, one cannot estimate all parameters rof the model from data on u(t).

Equations (19) and (20) indicate that (k.. 1/K1 ) and k. 3 K3 should

be used as parameters; then the predicted u(t) is invariant to K1 and K3.

This information proved useful in fitting the model (16). (17) to the

published experimental data for this system [3].

*1,

CONCLUSIONS AND SIGNIFICANCE

An efficient method has been developed here for the calculation of

parametric sensitivities for mixed systems of ordinary differential and

algebraic equations. The method has been tested successfully on many

problems, ranging from simple ODE's to large stiff systems of differential

and algebraic equations. The scheme has been implemented for a robust

implicit integrator (DASSL), and is applicable to any implicit integrator.
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